The Generalization of a Constructive Algorithm in Pattern Classification Problems
نویسندگان
چکیده
The use of a constructive algorithm for pattern classi cation is examined. The algorithm, a `Perceptron Cascade', has been shown to converge to zero errors whilst learning any consistent classi cation of real-valued pattern vectors (Burgess, 1992). Limiting network size and producing bounded decision regions are noted to be important for the generalization ability of a network. A scheme is suggested by which a result on generalization (Vapnik, 1992) may enable calculation of the optimal network size. A fast algorithm for principal component analysis (Sirat, 1991) is used to construct `hyper-boxes' around each class of patterns to ensure bounded decision regions. Performance is compared with the Gaussian Maximum Likelihood procedure in three arti cial problems simulating real pattern classi cation applications.
منابع مشابه
New Constructive Neural Network Architecture for Pattern Classification
Problem statement: Constructive neural network learning algorithms provide optimal ways to determine the architecture of a multi layer perceptron network along with learning algorithms for determining appropriate weights for pattern classification problems. These algorithms initially start with small network and dynamically allow the network to grow by adding and training neurons as needed unti...
متن کاملطراحی و آموزش شبکه های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت های موازی
Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this pap...
متن کاملA research on classification performance of fuzzy classifiers based on fuzzy set theory
Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملExtraction of Symbolic Rules from Artificial Neural Networks
Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Neural Syst.
دوره 3 شماره
صفحات -
تاریخ انتشار 1992